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Abstract 

The occurrence of regional temperature extremes on weekly to seasonal time scales has been 

a common climate impact in recent decades.  Both instances of extreme warmth and extreme 

cold have been documented and analyzed in the literature.  While these events have most often 

been analyzed independently, in this study the transition between temperature extremes is 

examined using station data.  Five measures of extreme temperature change are examined.   

At stations across the United States there has been a significant decrease in the temperature 

difference between the warmest and coldest percentile observed within each year based on 7-day, 

30-day and 90-day temperature averages during both the 1900-2017 and 1950 to 2017 periods.  

The maximum difference between percentiles associated with adjacent 7-day, 30-day and 90-day 

periods in each year has also declined significantly.  At the same time, the interval between the 

highest and lowest annual percentile occurrence has lengthened.  On a decadal basis, the 

frequency of shifts from the sub-5th to over-95th temperature percentiles has also declined 

through time, while the average time period between temperature occurrences in opposite tails of 

the distribution has increased. In general these results are very consistent across the U.S., 

although some regional and duration-dependent differences are noted.  For many of the extreme 
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temperature metrics, a high level of field significance is obtained in the Southwest, Great Plains 

and Midwest regions. 
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1. Introduction 

In the most recent decade, an increase in extremely warm summer temperatures (e.g. 

Rahmstorf and Coumou, 2011; Coumou and Rahmstorf, 2012) has seemed to be 

accompanied by with several occurrences of much colder than normal winter temperatures 

(e.g. Tollefson, 2014; Cattiaux et al; 2010) across mid-latitude regions of the northern 

hemisphere.  For instance the northeastern United States recorded its warmest February in 

124 years of record in 2017, while only two years earlier experiencing its second coldest 

February.  In 2014, the coldest July was recorded in parts of the Midwest and Southeast 

United States.  More recently, while April 2018 was the coldest on record in the Midwest, 

May (2018) average temperatures were among the warmest. These seasonal or shorter-time-

scale extremes have occurred over a backdrop of increasing average temperatures and 

warming daily extreme temperatures (Meehl et al., 2009; USGCRP, 2017).  The longer term 

changes in warm and cold season average temperature and daily extremes are directly 

consistent with anthropogenic changes in radiative forcing (Allen et al. 2018).   

Both warm and cold regional temperature extremes stem from the occurrence of high 

amplitude Rossby waves.  Cattiaux et al. (2010) attribute the extremely cold winter of 2009-

2010 across Europe to a quasi-stationary large scale circulation pattern, associated with an 

extremely negative phase of the North Atlantic Oscillation (NAO) (Hurrell, 1995).  Wang et 

al. (2010) also attribute record-breaking-cold temperatures in Asia and North America to the 

extremely negative NAO values which resulted in northerly surface winds and the southward 
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advection of Arctic air.  Hoskins and Woollings (2015) offer a slightly different perspective 

whereby instead of viewing only spatially fixed flow patterns such as the NAO, they consider 

persistent anomalous flow patterns in general which may take the form of a classic block, or 

an amplified and stationary Rossby wave pattern.  

Blocking patterns have also resulted in the occurrence and persistence of extreme warm 

temperature patterns in summer.  The 2010 Russian heat wave  was attributed to an “omega” 

blocking pattern (Dole et al. 2011).  Near the center of the block, the presence of  

northwardly displaced subtropical air and sinking vertical air motions contributed to 

extremely warm surface temperature.  This was amplified by feedbacks associated with 

severe drought conditions.  Garcia-Herrera et al. (2010) attribute similar circulation features, 

the northward displacement of subtropical air from the North Atlantic and local soil moisture 

deficit feedbacks, with the 2003 European heat wave.  Land surface feedbacks associated 

with soil moisture deficits have been widely shown to intensify and prolong heat waves (e.g. 

Hoerling et al., 2013; Miralles et al. 2014), but with important regional differences (Cheng et 

al., 2019) 

These recent occurrences of temperature extremes have led to hypotheses regarding the 

occurrence and potential cause of long-term changes in the responsible atmospheric 

circulation features.  Using self-organizing maps Horton et. al (2015) identified increasing 

trends in summer and autumn anticyclonic circulations that led to hot extremes in parts of 

Eurasia and North America.  In winter, they found the an increased incidence of northerly 

This article is protected by copyright. All rights reserved.



 6 

flow led to winter cold extremes in central parts of Asia.   Blocking over Greenland, has 

increased significantly during summer over recent decades (Hanna et al. , 2016; McLeod and 

Mote, 2016) and has shown an increase in interannual variability during December (Hanna et 

al., 2016).  In reanalysis data, Francis and Vavrus (2012) found a significant increase in 

block persistence as did  Coumou et al (2015)  during summer based on satellite data. Others 

such as Cattiaux et al (2016) found no evidence of increased block persistence using global 

climate models, suggesting that the detection and significance of such trends may be affected 

by differences in methodology. There is active debate in the literature regarding the 

mechanisms responsible for these circulation changes.  Many studies point to Arctic 

amplification as a primary causal mechanism, while others argue that other factors contribute 

(e.g. Varvus, 2018; McCusker et al. 2016). 

In terms of the tangible surface weather that results from these circulation changes, 

Coumou et al. (2018) found that summer temperatures within the warmest percentiles are 

increasing at a faster rate than summer temperatures in the coldest percentiles.  They argue 

that this is an indication that processes other than radiative forcing are influencing the change 

in summer extremes. Such a change increases the range between the warmest and coldest 

summer temperatures, but also contributes to the increase in intensity and frequency of 

summer heat waves in the mid-latitudes (Russo et al., 2014).   

Francis et al. (2018) coined a new metric called long duration events (LDE) and found 

that there was an increase in LDEs, defined as 4-day periods with either all stations 
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measuring ≤ 0.254 mm (dry LDE) or any station > 0.254 mm (wet LDE) of precipitation 

within a 2500 km2 grid.  They found both dry and wet spells have mainly increased since the 

mid-1990s.  Conversely, Swain et al. (2018) examined what they termed the “precipitation 

whiplash” signal (a change from sub-twentieth-percentile to over 80th percentile precipitation 

in adjacent wet seasons).  In climate model simulations for California, they found that this 

metric increased through the  21st century, with a larger increase in southern compared to 

northern California.  Cohen (2016) referred to “weather whiplash” and used reanalysis data 

to examine trends in zonal wind speed, temperature and geopotential heights, to conclude 

that temperature variability has increased in mid-latitudes. 

Here we develop and analyze a set of metrics referred to as “temperature swings”.  

Analogous to precipitation whiplash events, a swing is characterized either by the magnitude 

of the difference, or the period between, the highest and lowest percentile temperature 

anomalies within a year or as the difference and period between opposing extreme 

temperature anomalies (i.e. cold tail versus warm tail) across years.  The temporal changes in 

the resulting temperature swing climatology are analyzed across the continental United States 

and by region, as well as over different time scales. As with precipitation whiplash events, 

changes in temperature swing occurrence impact a number of natural and manmade systems, 

for example avian social behavior (Jetz and Rubenstein, 2011), insect survival (Sholes, 

2011), human health (Amiya, et al. 2009), agriculture (Wilhite et al. 2017), and electricity 

demand (Chang et al., 2016).   
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2.  Methods 

2.1 Data 

Daily average temperature data for U.S. stations in the Global Historical Climatology 

Network (Menne, et al. 2012) for which 1981-2010 normals existed were obtained from the 

Applied Climate Information System (ACIS) (DeGaetano et al., 2015).  Although GCHN data 

are not homogenized for non-climatic discontinuities, the values undergo extensive quality 

control (Menne, et al. 2012), assuring the data are of the highest quality possible.  Two sets of 

stations were selected, those with records that began in 1950 or earlier and those with records 

that extended back to at least 1900.  The set of stations with observations commencing in 1900 is 

a subset of the first.  The daily data were grouped into overlapping 7-, 30-, and 90-day duration 

intervals and averaged.  These intervals were allowed to cross calendar year boundaries.  For 

example, the 7-day duration average assigned to 2 January included data from the preceding 27-

31 December in addition to 1-2 January.  The subsequent 7-day duration average for 3 January 

included data from 28 December -3 January.  This choice of durations was intended to represent 

synoptic, sub-seasonal and seasonal time scales thereby reflecting conventional forecast periods. 

To facilitate spatial analysis the stations were aggregated into six National Climate Assessment 

regions (USGCRP, 2017).  

Stations were excluded when more than 10% of the possible i-day-duration intervals 

contained missing data.  Otherwise, missing data values were estimated using a procedure 

similar to that developed by DeGaetano et al. (1995).  The method assumes that the departure of 
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daily temperature from normal is homogenous over the region surrounding a station.  For each 

missing temperature, the closest station with both non-missing daily temperature and a 1981-

2010 normal was identified.  Using these values, an estimate for the missing temperature, Tmiss , 

was computed by 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑇𝑇𝑛𝑛 − 𝑁𝑁𝑛𝑛) + 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,               (1) 

where Tn and Nn are the daily temperature and official 1981-2010 daily temperature normal at 

the closest neighboring station and Nmiss is the daily temperature normal at the station with 

missing data.  

 

2.2  Swing Magnitude and Duration  

Each of the 365 duration-interval averages in a specific year was transformed to a 

percentile.  For example, a 100-year record includes one hundred 7-day duration averages ending 

on each specific date, d, within the year (e.g. March 2).  The 100 values for each date were sorted 

and the position of the value for a specific year, y, (e.g. March 2, 1991) used to assign a 

percentile to each average (Pdyi), where i is the duration interval.  Using these values, three 

metrics were computed for each year.  Swing magnitude, Sm, was defined as: 

𝑆𝑆𝑆𝑆𝑦𝑦𝑚𝑚 =  max
𝑑𝑑

𝑃𝑃𝑑𝑑𝑦𝑦𝑚𝑚 − min
𝑑𝑑
𝑃𝑃𝑑𝑑𝑦𝑦𝑚𝑚 .    (2) 

Thus Smyi is the difference between the largest and smallest daily percentile for interval i in year 

y.  Swing period, Sp, is the number of days between the date of occurrence of the maximum and 

minimum annual percentile, 
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   𝑆𝑆𝑆𝑆𝑦𝑦𝑚𝑚 = 𝑎𝑎𝑎𝑎𝑎𝑎[�𝑑𝑑�𝑃𝑃𝑑𝑑𝑦𝑦𝑚𝑚 =  max
𝑑𝑑

𝑃𝑃𝑑𝑑𝑦𝑦𝑚𝑚� −  �𝑑𝑑�𝑃𝑃𝑑𝑑𝑦𝑦𝑚𝑚 =  min
𝑑𝑑
𝑃𝑃𝑑𝑑𝑦𝑦𝑚𝑚�] .         (3) 

 

Adjacent swing magnitude Sa is similar to Smyi with the constraint that the two percentiles be 

associated with subsequent, non-overlapping duration intervals.  Thus 

𝑆𝑆𝑎𝑎𝑦𝑦𝑚𝑚 = max
𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎(𝑃𝑃𝑑𝑑𝑦𝑦𝑚𝑚 − 𝑃𝑃(𝑑𝑑+𝑚𝑚)𝑦𝑦𝑚𝑚).        (4) 

These three metrics are illustrated graphically in Figure1. 

Non-climatic discontinuities in daily GHCN data can potentially affect these swing 

metrics.  However, since the metrics define relative changes within each year, the effect of these 

unavoidable artifacts is likely minimal.  Moreover the regional grouping of stations in 

subsequent analyses further mitigates the influence of non-systematic discontinuities. 

A related metric is termed a tail swing.  Unlike Sp, tail swings can span years and unlike 

Sm and Sa, tail swings are defined by a specific percentile.  A tail swing commences when Pdyi 

crosses the 95th or 5th percentile and ends when Pdyi  crosses the corresponding threshold in the 

other tail of the empirical average temperature distribution (Fig. 1).   

For each 1900-2017 and 1950-2017 temperature time series, tail swings were tallied by 

assigning an occurrence to the date on which the change to the opposite percentile threshold first 

occurred.  For example in a record that started in 1900, if Pdyi  =  98 on 1 April 1900 and Pdyi  = 4 

on 15 June 1902, a tail swing occurrence would be assigned to 15 June 1902 even if the 

percentile for 16 June 1902  was also below the 5th percentile.  The subsequent tail swing would 

correspond to the next date on which Pdyi > 95th percentile occurred. The period of each tail 
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swing was defined as the length of time, in days, between tail swing occurrences. For the 

example above, the tail swing period is 806 days.  

 

2.4 Detrended Swing Metrics 

Since the computation of tail swings requires daily temperatures that span multiple years, 

longer term trends in the daily values can influence the frequency and period of tail swing 

occurrences.  To identify whether long-term temperature trends have influenced tail swing 

characteristics, duration-interval average temperature series at each station were detrended by 

fitting a linear trend to each of the 365 duration interval average time series. The resulting time 

series of daily slopes were smoothed using a 30-day lowess filter from the 

sm.nonparametric.lowess routine within the StatsModels software library 

(https://www.statsmodels.org/ ).  Figure S1 shows the resulting slopes by Assessment region. 

For the 1900-2017 period,  the regional and CONUS slopes for 7-day, 30-day and 90-day 

average temperature are predominantly positive, the exceptions being the Southeast regional 

series during all seasons, which is consistent with USGCRP (2017); the Midwest in autumn; and 

for the shorter durations the Northwest in late autumn (Fig. S1a, S1c, S1e).  The autumn cooling 

in the Midwest and Northwest was also present for the 1950-2017 period (Fig. S1b, S1d, S1f).  

The Southeast, however, showed warming throughout most of the year during the 1950-2017 

period except winter.  In general, daily temperatures warmed at a rate of between 0.05 and 0.15 
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°C per decade in both periods with the greatest warming during winter and the least warming in 

autumn consistent with (Wang et al., 2009) 

Residuals were calculated by subtracting the temperatures given by the smoothed 

regression slopes from the original temperatures. The residuals were then used to redefine the 

percentiles and ultimately recompute new tail swings and tail swing periods based on the 

residuals.  Detrended daily temperature was also used to re-assess the Sm, Sp, and Sa trends. 

However differences between the results using the original and detrended series were minimal. 

In all regions, the number of positive trends exceeded the number of negative trends for 

both the coldest and warmest annual percentiles. In general, more than twice of the number of 

positive trends occurred compared to negative trends, with the exception of the Midwest region 

were a similar number of positive and negative trends existed (Table 1).  Across the country the 

coldest percentiles on average warmed at a faster rate than the warmest percentiles. However 

over the period of record this difference was minimal (i.e. over a 67-year period the increase in 

the coldest percentile was on average <1 percentile greater than the increase in the warmest 

percentile (Table 1).  Regionally, the annual warmest percentile averaged 99 for 7-day durations, 

96 for 30-day durations and 88 for 90-day durations. The annual coldest percentiles averaged 2, 

5 and 12 for these durations. 

 

2.5 Swing metric trend assessment 
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The annual time series of Sm, Sp and Sa were evaluated for time dependent changes using 

both least-squares fit linear slope and the Kendall Tau statistic.  In all cases, the null hypothesis 

Ho: slope= 0 was assessed relative to the alternative Ha: slope ≠ 0.  This two-tailed test was 

conducted at the 95% level.  The station-specific results were summarized by National Climate 

Assessment region and the contiguous United States by tallying the number of null hypothesis 

rejections and the number of positive and negative slopes (regardless of significance) in each 

region.  

The regional groupings were used to examine the field significance of the test results.  To 

quantify the significance of the regional results, the original chronology of years was randomized 

to destroy the time dependence that may have existed in the original 1900-2017 time series.  A 

total of 1000 randomized sets of years were generated and each used to recompute the time series 

of Sm, Sp and Sa metrics, at all stations. The same set of randomized years was applied to all 

stations simultaneously to preserve any spatial relationships.  Trend tests were then repeated on 

the reordered time series and new regional summaries of null hypothesis rejections and slope 

sign counts compiled. When repeated 1000 times, this provided an empirical distribution of 

regional test counts against which the summaries based on the original (proper) chronological 

order could be compared. 

The significance of the observed changes in tail swing occurrence was tested in a similar 

fashion, albeit some modifications were required given the irregular (non-annual) spacing of tail 

swings events.  Tail swing occurrences were aggregated into 10-year, non-overlapping time 
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periods and for each block the total number of tail swing events and the average tail swing period 

were calculated.  These decadal time series were evaluated for time dependent changes based on 

the least-squares fit linear slope as before.  

The null hypothesis Ho: slope= 0 was assessed using an empirical distribution of 1000 

bootstrap-resampled slopes.  Each observed tail swing occurrence was randomly reassigned to a 

date within the available station record.  No two swings were allowed to occur within a given 

duration interval.  For example, when 90-day durations were considered,  once a tail swing 

occurrence was assigned to a date x, a second tail swing event could not be assigned to any of the 

89 days before or after x.  This prevented the randomly assigned tail swing events from 

overlapping.   

The resampled time series were then aggregated into non-overlapping 10-year periods 

and least-squares-fit slopes computed.  These 1000 resampled slopes formed the empirical 

distribution against which the null hypothesis was evaluated.  Ho was rejected when the original 

(non-randomized) values fell below the 2.5th or above the 97.5th percentile of the resampled 

distribution.  

 

3. Results 

3.1  Seasonality 

Figure 2 shows the seasonal cycle of the occurrence of the annual warmest and coldest 

percentiles.  These two values define Sm and Sp.  There is little regional variation to these 
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national patterns.  For 7- and 30-day duration events (Fig. 2a-b, 2d-e) a strong seasonal cycle is 

lacking.  For the 90-day duration, however, both the annual maximum and minimum percentiles 

show a tendency toward winter occurrences (Fig. 2g-h).  In some cases, nearly twice as many 

occurrences are evident in winter months as in summer months.  

The seasonality of adjacent swings (Sa events) is more pronounced (Fig. 2c, 2f, 2i).  For 

7-day duration swings, Sa events are generally more common in the transition seasons (Fig. 2c).  

This tendency transitions to a winter maximum and summer minimum as duration increases.  

The between-month differences in Sa occurrence are larger than those for the Sm event 

percentiles.  Ninety-day Sa events are twice as likely to occur in January compared to July (Fig. 

2i).  

3.2 Trends 

Swing Magnitude 

Trends in Sm are distinctly negative from 1950-2017, indicating that within a particular year 

the difference between the highest and lowest percentile occurrence has declined (Fig. 3a, 3d, 

3g).  The decline in this metric is more pronounced for durations greater than seven days.  For 7-

day durations (Fig. 3a) about half the trends are positive, but few reach the level of statistical 

significance.  More of the negative trends are significant, with many of these located in 

California, the Gulf Coast and the Northeast.  For 30-day durations (Fig. 3d), the number of 

positive Sm trends declines, with only a few reaching the level of statistical significance.  In 

contrast, the number of significant negative Sm trends increases, particularly in the Great Plains 
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and Midwest.  For 90-day durations (Fig. 3g), the number of significant negative trends increases 

further, particularly in the intermountain west.  Positive trends also increase in number from 

those observed for 30-day duration Sm.  These positive trends, which are generally not 

statistically significant, tend to be concentrated in the Ohio Valley, Southeast, and  Mid Atlantic 

regions. 

Over the longer 1900-2017 period, the geographic pattern of Sm trends is similar to that for 

trends starting in 1950 (Fig. 4a, 4d, 4g).  Although there are markedly fewer available stations 

and most are concentrated in the Mississippi Valley, 7-day duration trends are fairly evenly 

divided between increases and decreases, with few trends reaching the level of significance.  

However 30- and 90-day duration Sm trends are predominately negative (Fig. 4d, 4g) with a 

concentration of significant trends in the northern Great Plains and Midwest.  Like the 1950-

2017 trends, a cluster of positive trends exists in the Midwest, especially for the 90-day 

durations. 

 

Swing Period 

Trends in Sp are distinctly positive from 1950-2017 (Fig. 3b, 3e, 3h) indicating that within a 

particular year the period between the highest and lowest percentile occurrence has lengthened.  

For 7-day durations, the majority Sp trends are positive (Fig. 3b). Most of the significant Sp 

trends are concentrated in the Midwest. Negative trends in Sp dominate the Southeast.  Sp trends 

for 30-day durations are also primarily positive (Fig. 3e).  The number of significant (positive) 
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trends also increases particularly in the Midwest and Northern Great Plains.  Positive trends 

occur more frequently in the Southeast compared to those for the shorter duration.  For 90-day 

durations, a concentrated area of significant positive 90-day duration Sp trends extends from 

western parts of the Northeast, through the Great Lakes and Midwest, into the Northern Great 

Plains (Fig. 3h).  This is the general area that experienced significant decreasing Sm trends.  The 

number of negative Sp trends also increases for 90-day durations, particularly in the 

Intermountain, Northwest and central regions of the U.S (Fig. 3h).   

For the 1900-2017 period, the geographic patterns of Sp trends and significant Sp trends are 

similar to those for the 1950-2017 period (Fig. 4).  The most pronounced difference occurs with 

the significant 90-day duration trends.  Over the longer time period, these trends extend farther 

south ranging from the Northern Great Plains to the Gulf Coast and remain largely positive (Fig. 

4h). 

Sp, by definition, is not influenced by the magnitude of the percentiles. Therefore, the 

changes observed in Figures 3 and 4 are unlikely to be related to differential warming of the cold 

versus warm extremes.  Rather other factors, potentially related to the persistence and/or 

magnitude of the atmospheric circulation patterns that cause the extremes must contribute to the 

observed Sp changes.  Alternatively, temperatures in the warm tail of the distribution (highest 

percentiles) increasing at a slower rate than temperatures in the cold tail, could result in the 

decreases in Sm shown in Figures 3 and 4.  Table 1 shows that this pattern of change (greater 

warming of the lowest percentile relative to the warmest) on average occurs in all Assessment 
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Regions, however the magnitude of this difference is small. Detrending the multi-day 

temperature averages prior to computing Sm, Sp and Sa trends had minimal effect on the results, 

since this did not address the differential warming experienced by different parts of the 

distribution. 

 

Adjacent Swing Magnitude  

Like trends in Sm, Sa trends are predominately negative (Fig. 3c, 3f, 3i).  For 7-day 

durations, there is a similar number of negative and positive trends, most of which are not 

significant statistically (Fig. 3c).  Negative trends are concentrated in the Mid-Atlantic and 

Southeast regions.  As duration increases, with the exception of locations in the extreme northern 

Midwest (e.g. Wisconsin), trends are predominately negative and largely significant (Fig. 3f).  

The geographic pattern of  90-day duration trends is similar to that for the 30-day values.  The 

exception being the concentrated area of positive trends, which are mostly non-significant, is 

located farther south across Ohio and Indiana and extending into the Southeast region. 

Over the longer 1900-2017 time period, the pattern and magnitude of Sa trends is very 

similar to that for the 1950-2017 period (Fig. 4).  The most notable exception is that the 

concentration of positive Sa trends located in the upper Midwest for 7- and 30-day durations is 

characterized by mainly negative trends over the longer time interval.  Given the close 

correspondence between the Sa and Sm results, subsequently only the Sm results are presented. 

Field Significance 
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The concentration of significant trends in Figures 3-4 is potentially an artifact of the 

generally high spatial correlation among the Sm, and Sp time series from adjacent stations.  

While this is the case in some Assessment regions, in others, the number of statistically 

significant and negative Sm and positive Sp trends was greater than would be expected by chance 

(Fig. 5).  Over the 1900-2017 period, the numbers of positive and statistically significant Sp 

trends was greater than expected by chance (α ≤ 0.05) across the U.S. (Fig. 5).  Regionally, the 

number of positive and statistically significant Sp trends in the Great Plains and Southwest 

regions exhibited field significance most consistently.  

For Sm trends, the number of significant trends across the entire U.S. from 1900-2017 

was field significant at the α = 0.10 level or less.  The concentration of significant Sm trends was 

particularly noteworthy in the SW region (α ≤ 0.05) for all durations.  

Over the shorter and more recent 1950-2017 period, the field significance of the trends 

was higher, especially in terms of the number of statistically significant trends (Fig. 5).  The 

number of statistically significant Sm, and Sp trends was greater than that expected by chance (α 

<=0.5 for all but one duration across the U.S.).  Regionally the highest field significance levels 

were obtained in the Southwest and in most other regions for durations > 7 days, with the 

exception of the Midwest, which failed to attain field significance.  The number of negative Sm 

trends (regardless of significance) was significant in the Southwest and the Great Plains (with the 

exception of 7-day duration trends).  Across the U.S. field significance for duration of ≥15 days 
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was at least at the α = 0.10 level.  For positive Sp trends, field significance was not obtained 

nationally and occurred only for some regions and durations (Fig. 5).    

 

Regional Time Series  

The station-specific Sm, and Sp values within each U.S. National Climate Assessment  

Region were averaged to produce an aggregate time series. A contiguous United States 

(CONUS) time series was also computed based on an average of the station data.  As expected 

from Figure 5, Sm declines through time in the CONUS, with the 1950-2017 linear decline 

greater than that experienced from 1900-2017 (Fig. 6).  In all regions (the Great Plains is shown 

as a representative example) the subset of stations with the longest records (beginning in at least 

1900) reflect the regional trends and year-to-year variations of the larger set of stations with 

records beginning in 1950 (Fig. 6).  The CONUS average time series for Sa mirror the Sm 

values, with consistent decreasing trends for all durations and a slightly faster rate of decline 

since 1950 relative to 1900 (not shown). 

Time series of the interval between annual percentile swings, Sp, generally increase in all 

regions and the CONUS over the longer-term 1900-2017 period regardless of duration (Fig. 7).  

This indicates within a given year the relative temperature extremes tend to be separated by 

longer time periods.  Over the more recent time period, 1950-2017, the regional and CONUS Sp 

time series show a mix of increases and decreases, depending on region and duration (Fig. 7).  
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This corresponds well with the lack of field significance for Sp trends over the 1950-2017 in 

Figure 5.     

 

Tail Swings 

Like Sm and Sp, tail swing occurrence decreased through time while the period between 

tail swings increased.  For the 1900-2017 period, this was especially true in the northern Great 

Plains, Midwest and Southeast (Fig. 8) where significant trends were common for 7-day and 30-

day durations.  Tail swings for data averaged over 90-day periods also exhibited this behavior 

(decreases in decadal tail swing occurrence and increases in the time between tail swings), but 

the number of statistically significant trends was substantially lower (Fig. 8e-f).  Tail swing 

trends based on non-detrended daily data (not shown), were nearly identical to those based on the 

detrended data used for Figure 8.  The geographic pattern of decreasing tail swing magnitude and 

increasing tail swing period is also reflected based on the 1950-2017 period of record (Fig. 9). 

 Figure 10 focuses on the Midwest region, given the prominence of tail swings in this 

area.  In the early 20th century, stations in the Midwest experienced on the order of 40 7-day tail 

swings, 13 30-day tail swings and five, 90-day tail swings, generally consistent with the number 

of potential opportunities for tail swings (the number of 7 day periods is 12 times greater than 90 

day periods).  The decreasing trend in tail swing occurrence with time that characterized the 

region in Figure 8 and 9 for 7-day and 30-day durations is readily apparent in Figure 10a and 

10d. Likewise, the increase in the period between tail swings is also apparent in Figures 10b and 
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10e.  For both 7- and 30-day duration tail swings the average period between events increases by 

approximately 20%.  In the earliest three decades 7-day duration tail swings were separated by 

92 days on average, while in the most recent three decades the time between events increased to 

109 days (Fig. 10b).  The average time between 30-day duration tail swings is longer and 

increases from on average 254 days in the early part of the record to 332 days in more recent 

decades (Fig. 10e).   When the maximum time period between tail swing events (at any station) 

in each decade is considered (Fig. 10c and 10f) , the most recent decade (2008-2017) 

experienced the longest interval between successive tail swings for both 7-day (512 days 

between events) and 30-day durations (1324 days between events).  On average for the entire 

period of record, the decadal maximum time intervals between 7- and 30-day tail swings were 

433 and 1028 days respectively.  Recent 90-day tail swings were not noteworthy in recent 

decades. 

 

4. Conclusions 

Long term changes in temperature variability are examined from the prospective of  a 

metric termed temperature swings.  On an annual basis, a swing is based on the highest and 

lowest observed temperature percentiles and is defined by its magnitude (the absolute difference 

of the two percentiles) and period (number of days between the percentile extremes).  Related 

metrics specify the maximum swing magnitude between consecutive (period=0) swings, and the 

frequency of and period between occurrences of values below and above specific extreme 
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percentiles in opposite tails of the temperature distribution, for example below the 5th and above 

the 95th percentile. 

Across the U.S., there is a general tendency for swing magnitude to decrease from 1900 

(and 1950) to the present.  This occurs regardless of whether the opposing extremes occur 

anytime within the same year or during consecutive time intervals.  In addition, the period of 

time between extremes has consistently increased through these time periods.  This occurs in 

terms of the warmest and coldest extremes within each year and also between the occurrence of 

fixed extremes in opposite tails of the temperature distribution which typically span multiple 

years.  The decadal frequency of swings from one tail to the opposite tail has declined through 

time. 

These metrics provide a novel perspective on changes in intra- and inter-annual extreme 

temperature variability through time.  Decreases in intra-annual variation tend to be more 

pronounced and widespread for longer duration temperature averages (i.e. 30- and 90-day 

duration) as opposed to shorter 7-day aggregations.  However on an interannual basis, it is the 

shorter duration events (i.e. 7- and 30-day durations) that exhibit the most significant changes. 

The results are generally consistent with the studies that have examined the differential warming 

rates between cold and warm temperature extremes (Meehl et al., 2009) and changes in 

atmospheric circulation patterns, such as the tendency for increased blocking and more persistent 

patterns.  
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Meehl et al. (2009) found that warm extremes have occurred twice as frequently as cold 

extremes.  Potentially this could lead to cold extremes becoming more uncommon, thus 

decreasing swing frequency.  This explanation is most plausible for 7-day duration tail swings as 

the short duration and use of fixed 5th and 95th percentiles in the definition of tail swings is most 

analogous to the daily records analyzed by Meehl et al. (2009).  Detrending the mean time series 

would not address the differential warming between opposing extremes, potentially explaining 

the correspondence between the trended and detrended results.  

For longer durations, and especially for the Sm, Sp and Sa metrics, differential warming of 

the warm and cold extremes is less likely to be the only factor responsible for the decline in 

swings.  This is because these metrics are defined by relative, rather than fixed percentiles.  The 

Sm value is the same in a year regardless of whether the annual percentile extremes are defined 

by the 1st and 50th percentiles or the 50th and 99th percentiles.  Also, as duration increases the data 

become less similar to daily extremes.   

Rather, especially for Sp, the results are consistent with an increase in persistence.  If the 

circulation pattern associated with the warmest (or coldest) percentile anomaly within a year is 

more persistent, Sp will increase.  This is because the length of the persistent pattern is included 

in the interval leading up to the start of the alternate percentile anomaly.  Increased persistence 

could also play a role in the decline in Sm and Sa as this would tend to lower variability and 

hence limit the range of percentile anomalies experienced within any particular year, particularly 

on synoptic time scales (Schneider et al., 2015).  Given that the strongest declines in Sm and Sa 
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are found in the Midwest and Great Plains, it is plausible to consider land-atmosphere feedbacks 

as having a contributing role, given the influence of soil moisture deficits on the intensity and 

persistence of heat waves (e.g. Hoerling et al., 2013; Miralles et al. 2014).   

Collectively, the Sm,  Sp and Sa results are tangentially consistent with a similar study 

using precipitation.  Francis et al. (2018) found an increase in the duration of persistent wet and 

dry periods and concluded that weather patterns across North America were becoming more 

persistent.  As in this study, Francis et al. (2018) found the most pronounced changes in and 

adjacent to the midwestern U.S.   

More analogous to the tail swings examined here is the “precipitation whiplash” signal 

analyzed by Swain et al. (2018).  However, they found an increase in year-to-year change from 

sub-20th to over-80th percentile precipitation, as opposed to the decrease identified in this study 

using a similar metric for opposing temperature extremes.  Arguably the decreases in 

temperature swings were not spatially consistent along the west coast, which was the regional 

focus of Swain et al. (2018). Furthermore precipitation is not affected by potentially different 

rates of warming at low and high percentiles that likely influence our temperature tail swing 

results.  Similarly, although Cohen’s (2016) observation that zonally averaged temperature 

standard deviation has increased in mid-latitudes seems counter to these results, our focus on the 

most extreme temperatures and longer time scales complicates a direct comparison. 

The use of station-based temperature data complements previous studies examining 

changes in atmospheric circulation patterns.  The swing metrics analyzed here can serve as 
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proxies for circulation patterns related to the warmest and coldest temperatures experienced in 

different geographic areas over different time scales from weekly to seasonal.  Collectively these 

metrics indicate a slowing of the transition from circulation regimes producing the warmest and 

coldest temperatures.  In addition, when these transitions occur the magnitude of the change (i.e. 

the difference between the temperatures associated with warm and cold extremes) decreases.  

This pattern has been generally consistent through time.  Spatially, although the most significant 

changes are concentrated in the Southwest and Great Plains, there is a general consistency in the 

temperature swing trends across the U.S.   

Having identified these characteristics of extreme temperature transitions, future research 

is necessary to determine the relationship between transitions and the ambient circulation 

features.  For instance, understanding whether similar circulation features result in transitions in 

different regions of the country or during different times is necessary to ascribe a mechanism to 

the observed changes in extreme temperature variation and potentially explain the geographic 

patterns of change, which may be related large scale factors such as preferred wave patterns or 

local features such as regional soil moisture trends (e.g.  Ardilouze, 2017). 
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Figure Captions 

 

Figure 1.  Illustration of Sm, Sp, Sa and tail swing metrics using artificially generated data. In 

each year, Sm is depicted by the height of the light gray rectangles and Sp is given by 

the rectangle’s width.  The quasi-vertical dotted lines denote Sa, which may be 

contained within the interval defined by Sp.  The two complete tail swings in the data 

series are shown by the dark gray rectangles at the top (above the horizontal line 

marking the 95th percentile) and bottom (below the horizontal line marking the 5th 

percentile) of the graph. 

 

Figure 2   Monthly frequency of occurrence of the highest annual percentile (a, d and g); lowest 

annual percentile (b, e and h) and the largest percentile change between adjacent 

periods (c, f and i) for 7-day (a-c), 30-day (d-f) and 90-day (g-i) periods ending in the 

given month for stations in the contiguous U.S.   

 

Figure 3  Trends in Sm (a, d and g), Sp (b, e and h), and Sa (c, f, and i) for 7-day (a-c), 30-day 

(d-f) and 90-day (g-i) duration temperatures during the period 1950-2017 .  Blue (red) 

symbols indicate negative (positive) trends, with filled circles indicating significance 

at the α = 0.05 level.  
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Figure 4  As in Figure 3, but for the 1900-2017 period . 
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Figure 5  Field significance of the number of negative Sm and positive Sp trends and statistically 

significant Sm and Sp trends for different durations by Assessment region during 

1900-2017 (left panels) and 1950-2017 (right panels) .  Dark and light blue squares 

indicate field significance at the α = 0.05 and 0.10 level, respectively.  Combinations 

without shading indicate a lack of regional field significance. 

 

Figure 6  Time series of annual Sm for 7- (a and b), 30- (c and d) and 90- (e and f) day 

temperature durations.  The leftmost panels are averaged over stations in the 

contiguous U.S., the rightmost panels are averages for the Great Plains Climate 

Assessment region.  The blue lines are based on stations with available data in the 

1900-2017 period and the green lines based on stations with data in the 1950-2017 

period.  The red lines are the linear least squares slopes associated with each period. 

 
Figure 7  As in Figure 6, but for annual Sp. 
 
 
Figure 8  Trends in decadal tail swing frequency (a, c and e) and decadal average period 

between tail swings (b, d, and f) for 7-day (a-b), 30-day (c-d) and 90-day (e-f) duration 

temperatures during the period 1900-2017 .  Blue (red) symbols indicate significant  

(α = 0.05 level) negative (positive) trends.  

 

 Figure 9  As in Figure 8, but for 1950-2017. 
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Figure 10  Average number of tail swing occurrences (a, d and g); average time between tail 

swings  (b, e, and h) and maximum time between tail swings (c, f, and i) by decade 

based on 7-day (a-c), 30-day (d-f) and 90-day (g-i) average temperatures. Dark bars 

represent stations with data available in the 1900-2017 period, lighter bars show 

stations with data in the 1950-2017 period.   The Midwest Climate Assessment 

region is shown.  
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